

Technical parameters	RFUS-61/230V	RFUS-61/120V
Supply voltage:	230 VAC	120 V AC
Supply voltage frequency:	$50-60 \mathrm{~Hz}$	60 Hz
Apparent power:	$5 \mathrm{VA} / \cos \varphi=0.1$	$5 \mathrm{VA} / \cos \varphi=0.1$
Dissipated power:	0.6 W	0.6 W
Supply voltage tolerance:	+10	\% \%
Output		
Rated current:	1x switching (AgSnO_{2})	
Number of contacts:	$12 \mathrm{~A} / \mathrm{AC1}$	
Switching power:	3000 VA/AC1, 384 W/DC	
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$	
Switching voltage:	250 V AC1/24 V DC	
Min. switching power DC:	500 mW	
Mechanical service life:	3×10^{7}	
Electrical service life (AC1):	0.7×10^{5}	
Control		
Wireless:	up to 25-channels (buttons)	
Communication protocol:	RFIO2	
Frequency:	$866-922 \mathrm{MHz}$ (for more information see p. 76)	
Repeater function:	yes	
Manual control:	PROG (ON/OFF) button	
Range:	in open space up to 200 m	
Other data		
Operating temperature:	-15 to $+50^{\circ} \mathrm{C}$	
Operating position:	any	
Mounting:	screws	
Protection:	IP65	
Overvoltage category:	III.	
Contamination degree:	2	
Cross-section of connecting wires $\left(\mathrm{mm}^{2}\right)$:	max. 1×2.5, max. $2 \times 1.5 /$ with a hollow max. 1×2.5	
Recommended power cord:	CYKY 3x1.5 (CYKY 4x1.5)	
Dimensions:	$136 \times 62 \times 34 \mathrm{~mm}$	
Weight:	146 g	
Related standards:	EN 60669, EN 300 220, EN 301489 R\&TTE Directive, Order. No 426/2000 Coll. (Directive 1999/EC)	

- The switching unit with 1×12 A output channel is used for controlling appliances, sockets or lights.
- They can be combined with detectors, controllers, iNELS RF Control or system components.
- Multi-function design - button, impulse relay and time function of delayed ON or OFF with time setting of $2 \mathrm{~s}-60 \mathrm{~min}$. Function description can be found on page 74.
- The switching unit may be controlled by up to 25 -channels.
- The programming button on the unit is also used for manual control of the output.
- Range up to 200 m (in open space), if the signal is insufficient between the controller and unit, use the signal repeater RFRP20 or protocol component RFIO2 that support this feature.
- Communication frequency with bidirectional protocol RFIO2.
- The increased IP 65 protection is suited to mounting on the wall or in harsh environments such as the cellar, garage or bathrooms.

Device description

Connection

Single function - RFSA-11B

Function button ON/OFF

The output contact closes by pressing one button position, and opens by pressing the other button position.

Multi function - RFSA-61B, RFSA-62B, RFSA-61M, RFSA-66M, RFSAI-61B, RFSAI-62B, RFSC-61, RFUS-61

Function 4 -impulse relay

The output contact will be switched to the opposite position by each press of the button. If the contact was closed, it will be opened and vice versa.

Function 2-switch on

The output contact will be closed by pressing the button.

Function 5 -delayed off

The output contact will be closed by pressing the button and opened after the set time interval has elapsed.
$\mathrm{t}=2 \mathrm{~s}$ to 60 min

Function 3 - switch off

The output contact will be opened by pressing the button.

Function 6 - delayed on

The output contact will be opened by pressing the button and closed after the set time interval has elapsed.
$\mathrm{t}=2 \mathrm{~s}$ to 60 min .

Loadability products

RFJA-32B; RFSA-62B; RFSAI-62B; RFSA-66M

Load type	$\longdiv { \operatorname { c o s } \varphi \geq 0 . 9 5 }$ AC1	-M - AC2	- M-	AC5a without compensation		(M) AC5b	$\underset{\text { AC6a }}{\underset{3}{ } \mid \xi}$	m AC7b	AC12
$\begin{gathered} \text { Contact material } \\ \mathrm{AgSnO}_{2}, \text { Contact } 8 \mathrm{~A} \\ \hline \end{gathered}$	$250 \mathrm{~V} / 8 \mathrm{~A}$	$250 \mathrm{~V} / 5 \mathrm{~A}$	$250 \mathrm{~V} / 4 \mathrm{~A}$	x	x	250 W	$250 \mathrm{~V} / 4 \mathrm{~A}$	$250 \mathrm{~V} / 1 \mathrm{~A}$	$250 \mathrm{~V} / 1 \mathrm{~A}$
Load type	\qquad AC13	$\overline{ल n}$ AC14		$\stackrel{\square}{\mathrm{DC1}}$	(M) DC3		\square	जm DC13	$\overline{ल m}$ DC14
Contact material AgSnO_{2}, Contact 8 A	x	$250 \mathrm{~V} / 4 \mathrm{~A}$	$250 \mathrm{~V} / 3 \mathrm{~A}$	$30 \mathrm{~V} / 8 \mathrm{~A}$	$24 \mathrm{~V} / 3 \mathrm{~A}$	$30 \mathrm{~V} / 2 \mathrm{~A}$	$30 \mathrm{~V} / 8 \mathrm{~A}$	$30 \mathrm{~V} / 2 \mathrm{~A}$	x
RFUS-61									
Load type	$\cos \varphi \geq 0.95$ AC1	(M) AC2		$\because \square$ AC5a without compensation		 AC5b	$\underset{\text { AC6a }}{3 \mid \xi}$	men AC7b	\square
Contact material AgSnO_{2}, Contact 14 A	$250 \mathrm{~V} / 12 \mathrm{~A}$	$250 \mathrm{~V} / 5 \mathrm{~A}$	$250 \mathrm{~V} / 3 \mathrm{~A}$	$\begin{gathered} 230 \mathrm{~V} / 3 \mathrm{~A} \\ (690 \mathrm{VA}) \\ \hline \end{gathered}$	$\begin{array}{r} 230 \mathrm{~V} / 3 \mathrm{~A}(690 \mathrm{VA}) \\ \text { up to maxinput } \mathrm{C}=14 \mathrm{uF} \end{array}$	1000 W	x	$250 \mathrm{~V} / 3 \mathrm{~A}$	x
Load type	引\| $\xi *$ AC13	\bar{m} AC14		\square	-M - DC3		DC12	\bar{m} DC13	\bar{m} DC14
Contact material AgSnO_{2}, Contact 14 A	x	$250 \mathrm{~V} / 6 \mathrm{~A}$	$250 \mathrm{~V} / 6 \mathrm{~A}$	$24 \mathrm{~V} / 10 \mathrm{~A}$	$24 \mathrm{~V} / 3 \mathrm{~A}$	$24 \mathrm{~V} / 2 \mathrm{~A}$	$24 \mathrm{~V} / 6 \mathrm{~A}$	$24 \mathrm{~V} / 2 \mathrm{~A}$	x

RFSA-11B; RFSA-61B; RFSA-61M; RFSC-61; RFSTI-11B; RFDAC-71B

Load type	$\stackrel{\square}{\cos \varphi \geq 0.95}$ AC1	-M - AC2	-M - AC3	$\square \square$ AC5a without compensation		$\xrightarrow{(M)}$ AC5b	$\underset{\text { AC6a }}{3 \mid \xi}$	\cdots AC7b	\square
Contact material AgSnO ${ }_{2}$ Contact 16 A	$250 \mathrm{~V} / 16 \mathrm{~A}$	$250 \mathrm{~V} / 5 \mathrm{~A}$	$250 \mathrm{~V} / 3 \mathrm{~A}$	$\begin{aligned} & 230 \mathrm{~V} / 3 \mathrm{~A} \\ & (690 \mathrm{VA}) \\ & \hline \end{aligned}$	$\begin{gathered} 230 \mathrm{~V} / 3 \mathrm{~A}(690 \mathrm{VA}) \\ \text { up to max input } \mathrm{C}=14 \mathrm{uF} \end{gathered}$	1000 W	x	$250 \mathrm{~V} / 3 \mathrm{~A}$	$250 \mathrm{~V} / 10 \mathrm{~A}$
Load type	$\zeta \mid \xi A$ AC13	\bar{m} AC14		$\xrightarrow[\mathrm{DC1}]{\square}$	-M - DC3	-M - DC5	$\stackrel{\square}{\square C 12}$	\bar{m} DC13	\bar{m} DC14
Contact material AgSnO_{2}, Contact 16 A	x	$250 \mathrm{~V} / 6 \mathrm{~A}$	$250 \mathrm{~V} / 6 \mathrm{~A}$	$24 \mathrm{~V} / 10 \mathrm{~A}$	$24 \mathrm{~V} / 3 \mathrm{~A}$	$24 \mathrm{~V} / 2 \mathrm{~A}$	$24 \mathrm{~V} / 6 \mathrm{~A}$	$24 \mathrm{~V} / 2 \mathrm{~A}$	x

